ClusteringCoordinator Documentation
Overview
ClusteringCoordinator
is a coordination layer that manages the clustering workflow, handling data transformation, storage operations, and the clustering process. It acts as an intermediary between your application's data models and the KMeansClusteringService.
Class Structure
ClusteringCoordinator
Dependencies:
storageProvider
: Handles persistence of entries and clustersclusteringService
: Instance of KMeansClusteringServicevectorDimension
: Expected dimension of feature vectors (default: 256)
Main Method
performClustering(threshold:)
Orchestrates the complete clustering workflow.
Parameters:
threshold
: Float value determining cluster boundary conditions
Process Flow:
Fetches entries from storage
Converts entries to feature vectors
Performs k-means clustering
Transforms results back to application models
Persists results to storage
Throws:
ClusteringError.noValidPoints
: No valid points for clusteringClusteringError.missingEmbedding
: Entry lacks required embedding dataClusteringError.invalidVectorDimension
: Vector dimension mismatch
Helper Methods
convertEntryToVector(_:)
Converts application Entry model to feature vector format.
Parameters:
entry
: The Entry object to convert
Returns:
[Float]
: Feature vector representation
Throws:
ClusteringError.missingEmbedding
ClusteringError.invalidVectorDimension
analyzeCluster(entries:points:)
Performs analysis on clustered data.
Parameters:
entries
: Array of Entry objects in clusterpoints
: Array of Point objects from clustering
Returns:
Dictionary containing:
dominantSentiment
: Most common sentiment in clustertimeRange
: Temporal bounds of cluster dataclusterDensity
: Measure of point distribution
calculateDominantSentiment(_:)
Determines most frequent sentiment in a collection.
calculateTimeRange(_:)
Computes temporal bounds of cluster entries.
calculateClusterDensity(_:)
Calculates average distance between points in cluster.
Error Handling
Usage Example
Integration Points
Storage Integration
Works with StorageProvider
to:
Fetch entries for clustering
Persist resulting clusters
Update existing clusters
KMeansClusteringService Integration
Transforms data into required format
Handles vector operations
Processes clustering results
Data Model Integration
Works with:
Entry models (input)
Cluster models (output)
Vector embeddings
Metadata attributes
Best Practices
Error Handling
Always use try-catch blocks
Handle specific ClusteringError cases
Validate data before processing
Performance
Consider batch sizes for large datasets
Monitor memory usage with large vectors
Cache results when appropriate
Data Validation
Verify vector dimensions
Validate entry data completeness
Check threshold values
Limitations
Synchronous vector conversion
Fixed vector dimensionality
Single storage provider
Basic sentiment analysis
Future Improvements
Batch processing for large datasets
Async vector conversion
Multiple storage provider support
Enhanced cluster analysis
Improved error recovery
Performance monitoring
Configuration management