ClusteringCoordinator Documentation
Overview
ClusteringCoordinator
is a coordination layer that manages the clustering workflow, handling data transformation, storage operations, and the clustering process. It acts as an intermediary between your application's data models and the KMeansClusteringService.
Class Structure
ClusteringCoordinator
class ClusteringCoordinator {
init(storageProvider: StorageProvider, k: Int = 3, vectorDimension: Int = 256)
}
Dependencies:
storageProvider
: Handles persistence of entries and clustersclusteringService
: Instance of KMeansClusteringServicevectorDimension
: Expected dimension of feature vectors (default: 256)
Main Method
performClustering(threshold:)
func performClustering(threshold: Float) async throws
Orchestrates the complete clustering workflow.
Parameters:
threshold
: Float value determining cluster boundary conditions
Process Flow:
Fetches entries from storage
Converts entries to feature vectors
Performs k-means clustering
Transforms results back to application models
Persists results to storage
Throws:
ClusteringError.noValidPoints
: No valid points for clusteringClusteringError.missingEmbedding
: Entry lacks required embedding dataClusteringError.invalidVectorDimension
: Vector dimension mismatch
Helper Methods
convertEntryToVector(_:)
private func convertEntryToVector(_ entry: Entry) throws -> [Float]
Converts application Entry model to feature vector format.
Parameters:
entry
: The Entry object to convert
Returns:
[Float]
: Feature vector representation
Throws:
ClusteringError.missingEmbedding
ClusteringError.invalidVectorDimension
analyzeCluster(entries:points:)
private func analyzeCluster(entries: [Entry], points: [KMeansClusteringService.Point]) -> [String: Any]
Performs analysis on clustered data.
Parameters:
entries
: Array of Entry objects in clusterpoints
: Array of Point objects from clustering
Returns:
Dictionary containing:
dominantSentiment
: Most common sentiment in clustertimeRange
: Temporal bounds of cluster dataclusterDensity
: Measure of point distribution
calculateDominantSentiment(_:)
private func calculateDominantSentiment(_ sentiments: [String]) -> String
Determines most frequent sentiment in a collection.
calculateTimeRange(_:)
private func calculateTimeRange(_ entries: [Entry]) -> (start: Date, end: Date)?
Computes temporal bounds of cluster entries.
calculateClusterDensity(_:)
private func calculateClusterDensity(_ points: [KMeansClusteringService.Point]) -> Float
Calculates average distance between points in cluster.
Error Handling
enum ClusteringError: Error {
case noValidPoints // No valid points available for clustering
case missingEmbedding // Entry lacks required embedding data
case invalidVectorDimension // Vector dimension doesn't match expected size
}
Usage Example
// Initialize coordinator
let coordinator = ClusteringCoordinator(
storageProvider: myStorageProvider,
k: 3,
vectorDimension: 256
)
// Perform clustering
do {
try await coordinator.performClustering(threshold: 0.5)
} catch let error as ClusteringError {
switch error {
case .noValidPoints:
// Handle no valid points
case .missingEmbedding:
// Handle missing embedding
case .invalidVectorDimension:
// Handle dimension mismatch
}
} catch {
// Handle other errors
}
Integration Points
Storage Integration
Works with StorageProvider
to:
Fetch entries for clustering
Persist resulting clusters
Update existing clusters
KMeansClusteringService Integration
Transforms data into required format
Handles vector operations
Processes clustering results
Data Model Integration
Works with:
Entry models (input)
Cluster models (output)
Vector embeddings
Metadata attributes
Best Practices
Error Handling
Always use try-catch blocks
Handle specific ClusteringError cases
Validate data before processing
Performance
Consider batch sizes for large datasets
Monitor memory usage with large vectors
Cache results when appropriate
Data Validation
Verify vector dimensions
Validate entry data completeness
Check threshold values
Limitations
Synchronous vector conversion
Fixed vector dimensionality
Single storage provider
Basic sentiment analysis
Future Improvements
Batch processing for large datasets
Async vector conversion
Multiple storage provider support
Enhanced cluster analysis
Improved error recovery
Performance monitoring
Configuration management
Was this helpful?